VI HAR EN LØSNING
ALBEDO EFFEKTEN SOM KLIMATILTAG
Albedo effekten og kategorisering af sorte flader i vores samfund
Kategorisering af sorte flader i vores samfund
For at omsætte dette klimatiltag til handling er der brug for at sætte tal på klimabelastningen fra sorte flader, samt kategoriseret typen af sorte flader. Herfra kan relevante samfundstiltag sættes i værk for de enkelte kategorier. I den følgende gennemgang sættes fokus på en mulig kategorisering af sorte flader udfra opbygningen af vores samfund.
Bygninger, som har to underkategorierne med tagflade og vægge. Som materiale kan underinddeles i maling, som påføres overfladen og selve overfladens egenskab med den farve (eksempelvis skiffertage, tagpap eller tagsten)
Biler, som er veldefineret objekter med bilmærke og model, og som i deres produktionsbeskrivelse definere materiale og farve på bilens overflade.
Vejsystemer, som har fokus på vejbelægningens materiale og farve
Tekstiler, som befinder sig udendør. Disse tekstiler kan inddeles i to underkategorierne. Udendørs båret tøj (eksempelvis en jakke), samt udendørs genstande beklædt med tekstiler (eksempelvis en parasol eller en havetrampolin).
Marker, hvor en nypløjede brun mark har en anden Albedo koefficient end mærker, som er vokset til med grønne afgrøder.
Havet, som både har karakter af sort og hvidt afhængig af vandets bevægelse og tilstand. Eksempelvis vil sollys som rammer hvid damp fra skibenes skorsten reflektere kortbølget sollys i højere grad end det sollys som rammer et mørkt hav.
Mørke luftbårne partikler, som kan transporteres til iskapperne på klodens nordpolog sydpol – og som lægge sig på den hvide sne. Dette skabe samme effekt som de sidste rester beskidt sne i slutningen af en vinter. Når sneen smelter bliver partikler liggende på overfladen og gør gradvist overfladen mørkere. På polerne vil den mørke sne først blive hvid igen, når ny sne lander på overfladen og ændre farver på overfladen til hvid.
Hvad med sorte biler og sort asfalt?
Hvad med sorte tagflader?
Hvad med sorte affaldsspande?
De områder som er operationelle lettest at påvirke bør være dem som først tages i brug som klimatiltag. Eksempelvis vil det være relativt enkelt at i blande hvidt sand i tagpapets overflade, hvilket vil ændre farven på tagpapet. Det vil også være enkelt at placere rullegræs eller bakker med sedum planter ovenpå tagpapet og dermed ændre den overflade som mødes af sollyset.
For at realisere “Albedo effekten, som klimatiltag” kan bruges tilskud og afgiftssystemet. Eksempelvis kan der lægges afgift på udendørs maling med en albedo koefficient over en given værdi. Dette kunne sættes i forhold til grøn for at fascilitere biologiske grønne flader.
Belastningen fra sort udendørs maling kan fastslås ved at bruge salgstal fra forhandlere af maling. Det samlede mængde sort udendørsmaling skal korrigeres i forhold til, at der altid bliver en sjat maling tilbage efter end maling og dækningsgrad (ofte males flader to gange for at opnå tilfredsstillende resultat).
Tal på sorte flader
Brug digitale værktøjer
Kan vi sætte tal på sorte flader, så har vi et værktøj som de store tandhjul i samfundet kan bruge. For så kan politikere eller erhvervslivet sætte et mål på eksempelvis x antal procens reduktion i arealet af sorte flader.
Men hvordan kan dette gøres. Her får du dels, hvad Chat GPT giver af svar. Dels for du sidst på siden det svar, som en ung studerende fik ved at bruge tid på internettet til at finde værktøjer til at måle Albedo effekten.
Spørgsmål stillet til ChatGPT
Jeg vil gerne lave et system, der kan analysere Google Maps satellitbilleder for at vurdere hvor mange huse i Danmark, der har sorte tage i forhold til at farver. Kan du komme med et forslag til, hvordan dette kan automatiseres?
Albedo effekten
Kan klimabelastningen fra sorte tagflader beregnes udfra luftfoto?
Her er en bud på, hvad internettet giver af muligheder
Liste med albedo-værdier for typiske materialer
Metode 1 – NASA
Jeg har prøvet at finde frem til NASA’s albedo-målinger, men indrømmet, jeg synes virkelig at hjemmesiden er indviklet, når man først har fundet frem til sit område, og ønsker at trække dataene ud. Her får du lige nogle af de steder, hvor jeg er gået i stå, men som er godt på vej (tror jeg).
Metode 2 – Regne ved hjælp af ImageJ.JS og albedo-værdier
I sammenhæng med listen over albedo-værdier for typiske materialer har jeg også fundet følgende program (https://ij.imjoy.io/#), der forholdsvist nemt kan måle arealer i et billede.
På ovenstående billede har jeg taget et billede af vores grund fra google-maps og kopieret det ind i programmet. Jeg gjorde følgende:
- Sæt et billede ind vha. ctrl-v.
- Tryk på Analyze → set measurements → area og perimeter → OK
- Tryk på , og mål en tilfældig, letgenkendelig længde i billedet, hvor du kender (eller kan finde) den rigtige afstand i virkeligheden. F.eks. målte jeg længden af vores grund, hvorefter jeg fandt afstanden i maps. Læg mærke til, hvor mange pixels længden er.
- Tryk på analyze → set scale Indtast din længde i pixels, og derefter den virkelige længde.
5. Markér et bestemt areal (f.eks. hustaget) ved at trykke på figurerne oppe i menulinjen.
6. Tryk på analyze → measure.
Nu burde du kunne se arealet af fladen i Results-boksen.
Ved derefter at gange fladens størrelse med albedo-værdien (f.eks. fra boksen – og hvis det skal være mere præcist, kan man jo også måle på den konkrete flade – det er der massere af eksempler på online, f.eks. den virkelig fine side: http://albedodreams.info/how_to/how-to-calculate-albedo-yourself/, der også benytter ImageJ.JS) kan man få et overblik over cirka-albedoværdien.
Fordele:
- Metoden tager højde for de farveforvridninger, som kan opstå på et billede.
- Det kræver som udgangspunkt ikke, at husejerne selv bliver involveret.
- Det er gratis og ukompliceret.
Ulemper:
- Det er temmelig besværligt at måle alle de forskellige flader i et billede.
- Billederne vil ofte vil være taget i en lidt skrå vinkel.
- Tabellen over typiske albedoværdier er meget generel.
- Det vil være meget omstændigt, hvis man skulle måle den konkrete albedoværdi for en bestemt overflade på folks matrikler.
Metode 3 – billedredigering
Jeg har hørt, at man på de fleste kameraer kan indstille det sådan, at kameraet måler, hvor meget de forskellige farver i billedet udgør. Jeg har ikke selv noget kamera, så det har jeg ikke rodet med 😉
Ulempen er selvfølgelig, at et sådant billede ville skulle tages lige ovenfra, plus det faktum, at albedo-effekten jo også afhænger meget af lys/skygge og årstiden. Det kan man dog tage højde for ved at kalibrere med en hvid flade, men det gør ikke ligefrem processen simplere.
Metode 4 – Landsat + formel
Jeg fandt denne her side på nettet, og syntes umiddelbart, at det så virkelig spændende ud. Og så skader det ikke, at det er fra Yale. Med den metode kan man direkte udregne albedoeffekten ud fra et billede – men præcis hvordan, må du finde ud af 🙂
Måske ville den også kunne kombineres med metode 3.?
Metode 5 – Solargis
Hjemmesiden Solargis lover også, at de har albedo-værdier, men det kræver, at man køber abonnement, så det har jeg ikke prøvet. Men du får lige linket:
Opsummering fra person som lavede undersøgelsen
Som du kan se, er det jo ikke ligefrem noget voldsomt prangende, jeg er nået frem til, og det er i hvert fald temmelig besværligt og upræcist alt sammen. Men jeg må nok indrømme, at selvom jeg synes vældig godt om projektet, er jeg ikke den store computer-/redigering-/teknik-/research-/dataekspert, så dette her er nok det bedste bud fra min side på området.
Jeg håber, at det i det mindste kan inspirere.